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Abstract—In this project, we develop a novel re-localization
algorithm which addresses the global localization problem. We
modify PoseNet, a robust and real-time monocular six degree of
freedom re-localization system, to solve the purpose of smoothing
and mapping in conjunction with GTSAM. Our system trains
a convolutional neural network to regress the 6-DOF camera
pose from a single RGB image in an end-to-end manner without
the requirement of additional feature detection. The algorithm
operates in real time, taking approximately 45ms per frame
to compute. We use VGG-16 network to achieve solutions
to complicated out of image plane regression problems. We
leveraged transfer learning from large scale classification data.
We also demonstrate the viability of the algorithm to localize
in situations with difficult lighting, motion blur and different
camera intrinsic where point based SIFT registration fails.

Index Terms—PoseNet, GTSAM, CNN, Pose Regression, re-
localization

I. INTRODUCTION

In the scenario of an arbitrary change of location, commonly
referred to as the kidnapped robot problem, a robust and
real-time re-localization is necessary in robot perception. To
approach this problem, we want to explore the advances in
Deep Learning, specifically a Convolutional Neural Network
for pose regression. This project outlines our implementation
of a full robot re-localization pipeline using PoseNet [4] as the
sensor model, the odometry of the robot as the action model,
and Georgia Tech Smoothing and Mapping (GTSAM)[18] as
our backend for factor graph optimization.

The motive behind this project is to demonstrate a robust
method for localization of a robot in places where SIFT
based feature registration fails: difficult lighting, different
environmental scenes and motion blur to name a few. We’ve
demonstrated our pipeline capable of re-localizing a robot to
within 2m and 3◦ of its true position in mid-scale environ-
ments, and that convolutional neural networks, used on mono
camera systems, can be a viable solution to the kidnapped
robot problem.

Convnets help build an end-to-end model to regress cam-
era’s orientation and position but they are unable to be gener-
alized for different data distributions. Training convolutional
networks is usually dependent on very large labeled image
datasets, which are costly to assemble. Examples include
the ImageNet and Places datasets, with 14 million and 7
million hand-labeled images, respectively. Therefore, we use
transfer learning which trains a pose regressor, pre-trained
as a classifier, on immense image recognition datasets. This

converges to a lower error in less time, even with a very sparse
training set, as compared to training from scratch. We have
pre-trained our model on the Places dataset [19].

II. RELATED WORK

The localization problem is solved through two approaches:
Metric-based and Appearance-based. Metric SLAM localizes
a mobile robot by focusing on creating a sparse or dense map
of the environment. M. Cummins and P. Newman[14] propose
scalable appearance-based localizers which use SIFT features
in a bag of words approach to probabilistically recognize
previously viewed scenery. Convolutional neural networks
have also been used to classify a scene into one of several
location labels [15].

A method of Scene Coordinate Regression Forest for re-
localization is proposed by D.P. Kingma and Jimmy Ba [10],
where they use depth images to create scene coordinate labels
which map each pixel from camera coordinates to global scene
coordinates. This mapping was then used to train a regression
forest to regress these labels and localize the camera. PoseNet
is closely related to this algorithm.

A robust and real-time monocular six degree of freedom
visual re-localization system is also provided by Alex Kendall
and Roberto Cipolla[11]. They use a Bayesian convolutional
neural network to regress the 6-DOF camera pose from a
single RGB image. Their algorithm can operate indoors as
well as outdoors in real time, taking under 6ms to compute.

The ”learning to see by moving” approach learns to do
visual odometry with a deep CNN given a couple of nearby
frames [12]. Although it doesn’t work very well yet, but one
can imagine hooking this into something like the LSD-SLAM
pipeline to obtain much more robust associations between
neighboring frames or a frame with its nearest keyframe, than
edges alone can provide.

CNN-SLAM presents a CNN-based depth prediction for
monocular SLAM and semantic mapping [13]. Although con-
volutional neural networks classify spatio-temporal data really
well, they are only just beginning to be used for regression.
They have advanced the state of the art in object detection
[16] and human pose regression [17]. However their regression
targets are limited to lie in the 2-D image plane. PoseNet
regresses the full 6-DOF camera pose transform including
depth and out-of-plane rotation. Furthermore, it’s able to learn
regression as opposed to being a very fine resolution classifier.
It has been shown that convolutional network representations



trained on classification problems generalize well to other
tasks. These representations of classification can be applied
to 6-DOF regression problems. Using these pre-learned repre-
sentations allows convolutional networks to be used on smaller
datasets without over-fitting.

III. METHODOLOGY

The methodology employed in the project deploys the
pipeline shown in Figure 1.

Fig. 1: Project Pipeline

The individual components of the above figure are described
in detail below:

A. PoseNet

In our project, we provide PoseNet with vision data (images)
as input and get the camera pose in a 6 DOF frame of reference
as it’s output. PoseNet [4] is a robust and real-time monocular
six degree of freedom re-localization system which deploys
a convolutional neural network (convnet) trained end-to-end
to regress the cameras orientation and position. It leverages
transfer learning from very large scale classification datasets
which helps it converge to a lower error in substantially lesser
time, even with a very sparse training set, as compared to
training the whole network from scratch.

Fig. 2: PoseNet Workflow

Appearance-based relocalization has had success [1, 2] in
coarsely locating the camera among a limited, discretized set
of place labels, leaving the pose estimation to a separate
system. PoseNet presents a means of computing continuous
pose directly from appearance. The scene may include multiple

objects and need not be viewed under consistent conditions.
It estimates the camera pose directly from a single monocular
RGB image. The output of the network is a pose p given
by a 3D camera position x and orientation represented by a
quaternion q:

p = [x, q] (1)

Pose p is defined relative to an arbitrary global reference
frame which is defined by the training set used. Quaternions
are the chosen form of orientation representation mainly
because arbitrary 4-D values are easily mapped to legitimate
rotations by normalizing them to unit length. To regress this
pose, the convolutional neural network is trained on Euclidean
loss using stochastic gradient descent with the following
objective loss function:

loss(I) = ||x̂− x||22 + β||q̂ − q

||q||
||22 (2)

The parameter β is a scale factor chosen to keep the
expected value of position and orientation errors to be ap-
proximately equal. In our loss function, a balance(β) must
be struck between the orientation and translation penalties as
they are highly coupled. This is mainly due to the fact that
they are regressed from the same model weights. The optimal
β is given by the ratio between expected error of position
and orientation at the end of training, not the beginning.
Based on thorough experimentation, we found that β is greater
for outdoor scenes (when compared to indoor scenes), as
positional errors tend to be larger (0.5m indoors versus 2m
outdoors on average).

Fig. 3: VGG-16 Architecture

The original implementation of PoseNet uses the
GoogLeNet for classification. We, however, used another
CNN architecture for classification: VGG-16 [6]. It serves
as a basis for developing our pose regression network. The
architecture is shown in Figure 3. It is characterized by its
simplicity, using only 3x3 convolutional layers stacked on
top of each other in increasing depth. With a given receptive
field(the effective area size of input image on which output
depends), multiple stacked smaller size kernels are better than
the ones with a larger size kernel because multiple non-linear



layers increases the depth of the network which enables it to
learn more complex features, and that too at a lower cost.

The VGG convolutional layers are followed by 3 fully
connected layers. The width of the network starts at a small
value of 64 and increases by a factor of 2 after every sub-
sampling/pooling layer. It achieves the top-5 accuracy of 92.3
percent on ImageNet. Volume size reduction is handled by max
pooling. Two fully-connected layers, each with 4,096 nodes
are then followed by a softmax classifier.

B. Georgia Tech Smoothing and Mapping
Georgia Tech Smoothing and Mapping (GTSAM) [8] is

a library of C++ classes that implements smoothing and
mapping (SAM) in robotics and vision, using factor graphs
and Bayes networks as the underlying computing paradigm
rather than sparse matrices.

Factor graphs are graphical models [3] that are well suited to
modeling complex estimation problems, such as Simultaneous
Localization and Mapping (SLAM) or Structure from Motion
(SfM). They are bipartite graphs consisting of factors con-
nected to variables. The variables represent the unknown ran-
dom variables in the estimation problem, whereas the factors
represent probabilistic information on those variables, derived
from measurements or prior knowledge. Bayes networks are
another type of graphical models which are directed acyclic
graphs.

GTSAM provides state of the art solutions to the SLAM and
SfM problems, but can also be used to model and solve both
simpler and more complex estimation problems. It exploits
sparsity to be computationally efficient. Typically, measure-
ments only provide information on the relationship between
a handful of variables, and hence the resulting factor graph
will be sparsely connected. This is exploited by the algorithms
implemented in GTSAM to reduce computational complexity.
Even when graphs are too dense to be handled efficiently by
direct methods, GTSAM provides iterative methods that are
quite efficient regardless.

In our project we use incremental smoothing and mapping
using the Bayes tree (iSAM2) [7] as our back-end optimization
tool. Based on Bayes Tree structure, the first order least
square matrix can be updated efficiently according to the factor
dependencies.

C. Sensor Fusion
In our project, we build the factor graph based on robot

states (2D pose (x, y, θ)) and fuse the PoseNet prediction by
adding it’s factor to the current vertices. Referring to Figure
4, we define Xt as the estimation of the current robot 2D
pose. Each robot pose is constrained by the odometry and its
covariance, which is shown as the black dot factor in the
figure. The odometry can be directly calculated based on the
measurement from wheel encoders and inertial measurement
unit (IMU). The covariance of the odometry is based on the
sensor specifications and varies from robot to robot.

We assume each odometry factor to be a Gaussian random
variable, and independent of each other. The odometry mea-
surement is generally higher in frequency, hence we do not

add the odometry factor immediately. Instead, we accumu-
late the odometry’s mean and covariance, according to the
the sum of Gaussian independent random variables, till we
get the ground-truth pose generated by PoseNet. Using this
approach synchronizes the frequency of PoseNet measurement
and odometry measurement efficiently without building a large
factor graph, while maintaining good accuracy.

To fuse the PoseNet measurement/prediction, an extra factor
similar to the GPS measurement is connected to the current
vertex of the robot. This can be seen in Figure 4, where
we add the PoseNet factor in purple color by matching the
time-stamp. This measurement is independent of the existing
graph and added to the current vertex as a prior factor. The
covariance of the PoseNet measurement is obtained from
running the PoseNet on the test dataset. In cases where the
test covariance cannot be obtained, an approximation is used,
which is suggested by the training standard deviation. An
assumption while computing this approximation is that the
test and train images are obtained from a similar distribution.

Fig. 4: Factor Graph

IV. EXPERIMENTS

In this section, we evaluate the implemented methods, in-
cluding PoseNet, sensor fusion, and localization with GTSAM.
They are evaluated on 3 datasets encompassing both indoor
and outdoor scenes. For all these datasets, we need the robot
poses as ground truth to train PoseNet. If the odometry data
is also available, we use GTSAM to fuse them with PoseNet’s
outputs and provide a final prediction of the robot pose.

A. Datasets

Our experiments were conducted using the following
datasets as input to compare how well our pipeline performed
in different environments.

1) Outdoor Dataset: King’s College: The King’s College
dataset is a subset of the Cambridge Landmarks Dataset and
is also used in the original PoseNet paper [4]. The rationale
behind using this dataset is to benchmark our implementation
with respect to the original implementation.

2) Outdoor Dataset: Shop Facade: This dataset is similar
to the King’s College Dataset as it originates from the Cam-
bridge Landmarks Dataset as well. The reason behind using
this is to test our implementation on a very sparse dataset and
compare it to the performance of the original PoseNet paper
[4].



Fig. 5: Example Images: The Cambridge Landmarks Dataset

Fig. 6: Example Images: NCLT Dataset

3) Outdoor Dataset: North Campus Long Term: The North
Campus Long-Term Vision and LIDAR Dataset, or NCLT
Dataset, is an outdoor dataset that contains the data gath-
ered spanning multiple sessions of a Segway robot exploring
the University of Michigan’s North Campus. Approximately
5.5km of the campus was covered during each of the 15

sessions.

Fig. 7: The Path encompassed in the sessions used: (i) old
(dataset from 2012-01-08), (ii) new (dataset from 2012-03-
17)

B. Training

We implemented VGG-16 in Tensorflow that was pre-
trained on the Places2 dataset [9]. We slightly modified the
architecture by replacing the last softmax classification layer
with one fully connected layer with 2048 neurons. On top of
this layer, we add an output layer with either 6 or 7 output
regression units. The number depends on the representation
of the training data. 6 neurons are used when the orientation
is represented as Euler angles, whereas 7 are used when it’s
represented using quaternions. On the Shop Facade, King’s
College and Fetch datasets, the ground truth for rotations are
represented as quaternions, so the pose vector returned by
PoseNet is of 7 dimensions. The NCLT dataset, however, uses
Euler angles, so the pose vector output is of 6 dimensions
instead.

We use the ADAM optimizer [10] that uses the first and
second order moments to control the step size of the gradients
updates. The learning rate is set to 1e−5 and β1 = 0.9, β2 =
0.999, ε = 1e−8. For the loss function, the q

||q|| is modified to
q, suggested by author’s implementation.

Each of the training images are pre-processed as follows
before being fed to the network:

1) Scale down the original image till the smallest dimension
is of size 256 pixels. In our case, the input images are
of various sizes, which we then scale down to a size of
455 x 256 px, and rotate them accordingly

2) Generate 128 random crops of size 224 x 224 from the
scaled down image, along with a center-cropped region.

3) Normalize each of the generated samples by subtracting
the mean and dividing it by the standard deviation.

4) Associate the generated samples to their corresponding
labels and send them to the network for training.



Fig. 8: Training loss on the following datasets: (i) ShopFacade, (ii) King’s College, and (iii) NCLT

To validate our algorithm we use four sequences of NCLT
dataset to train our PoseNet neural network and then use it
on different datasets to test our results. Since the size of each
sequence is very large and the trajectory is not identical, we
picked the overlapping trajectories that appeared in the four
sequences that we chose. For the training sequence, they are:
2012-01-08, 2012-03-17, 2012-10-28 and 2012-11-04 and for
testing, we use 2012-03-31. We sampled around 650 images
from each of the training sequences and 605 images from the
testing sequence in the overlapped area. From inspection, this
area contains buildings but the features are not rich enough,
since all the buildings look similar.

We found out the following weighting factor,s β in the loss
function to work out best for the respective datasets:

1) Shop Facade: 100
2) NCLT: 100
3) King’s College: 500

The training of ShopFacade and King’s College converges in
2 hours on average using two GTX1070 GPUs, while NCLT
takes 4-5 hours. The translation and rotational loss obtained
for each dataset is shown in Figure 8.

C. Testing Results

1) PoseNet Regression Results: We test PoseNet predictions
on the Shop Facade and King’s College dataset and plot the
ground-truth versus predictions (refer Figure 9). Note that to
speed up the testing process, we only center crop a 224 ×
224 region and feed it into the network. We just take into
consideration the (x, y, θ) locations from the predicted pose
vector instead of the 6-DOF pose. The mean error and standard
deviation obtained from regression can be seen in Table I. The

distance is in meters, and θ is in rad. These errors are close
to those in the original PoseNet paper.

On large scale outdoor scenes such as NCLT, the testing
error is around 12 meters, much larger than the errors of King’s
College. We have singled out some potential reasons for the
same:

1) The use of a super wide angle lens in the NCLT Dataset
2) PoseNet works by mapping features in an image to

regress the camera pose. The images from the NCLT
Dataset however are taken from far out locations, laying
very less stress on the features (such as buildings, etc)

3) To localize, PoseNet generally requires images from
different viewing angles, rather than a continuous stream
of images, as was the case with the NCLT dataset.

To arrive at the above conclusions, we tested PoseNet on (i)
a small area of the map in Figure 7, and (ii) the whole map
of the session.

2) PoseNet fused with Odometry: With the optimization
from GTSAM as back-end and PoseNet measurement as
a front-end sensor solution, the localization result can be
found in Figure 11. The measurement mean error has been
greatly reduced and the trajectory has been smoothed with the
information of the odometry data. The error statistics can be
found in [citation to nclt table]. The PoseNet prediction and
iSAM optimization frequency is 22 Hz.

V. DISCUSSION

A. PoseNet Pose Regression

We noticed that PoseNet performs well when the input
images contain unique features, such as the geometry of



Fig. 9: Test Result of PoseNet predictions on (i) Shop Facade, (ii) NCLT and (iii) King’s College

DataSet Train Frames Test Frames Spatial Extent PoseNet Mean(VGG-16) PoseNet Std Dev(VGG-16) PoseNet Mean (GoogLeNet)
NCLT (parital) 2622 605 300m x 150m -12.370m, 1.146° 37.121m, 20.340° NA
King’s College 1220 343 140m x 40m 1.587m, 2.38◦ 6.02m, 3.684° 1.92m, 2.70◦

Shop Facade 231 103 35m x 25m -1.108m, 5.615° 3.00m, 15.069° 2.1m, 5.20◦

TABLE I: Dataset details and Test Results, Compared with the PoseNet paper’s result

the buildings or windows. However, it doesn’t perform well
when the images of different locations share similar features.
For instance, in Figure 10a and Figure 10b, whose majority
regions are grass/pathway/sky. Test results on these images
yield large errors.

(a) Error: 54.439m, −35.795° (b) Error: 8.127m, −14.438°

Fig. 10: Images with unique features like buildings will have
better predictions than those with common features such as
pathways/trees

Moreover, the test result indicates that when the spatial
extent of the dataset grows, the errors of the predictions
increase. Especially when the movement of robot includes
more rotations, the rotation errors will increase. NCLT dataset
has larger scale with many turn arounds, and accordingly it
has large prediction error. Our intuition is that in a large scene,
the network is closer to its capacity.

B. PoseNet fused with GTSAM

The trajectory optimized from the GTSAM-iSAM2 matches
closely with the ground truth which is a result of a SLAM
sensor fused with camera at 22 Hz frequency. The mean error

and standard deviation are reasonable, since the dataset is an
outdoor dataset and the scale is large. As for the running
speed, we write our codes in python, but the running speed is
still very high, which is about 0.045 frames per second. The
performance can be further improved by C++ implementation.
These results show the potential of real-time performance
on a robot that only requires an inexpensive mono camera.
Meanwhile, it needs a powerful GPU for the neural network
prediction.

C. Global Localization

In this project, we initialized our robot with an arbitrary
starting pose and tried to localize the robot with a bad prior.
From the test results, if the scene has been seen by PoseNet,
the robot can be localized globally quickly, even if it is kept
at an arbitrary location abruptly. However, if the surroundings
are new to the robot, the robot will fail to localize. This is
due to the fact that the PoseNet regressor is a re-localization
algorithm that solves the kidnapped robot problem. We have
used some sequences of the scene for training and some for
testing as already mentioned in the Training subsection before.

From Figure 11, we can see our algorithm localize the robot
very well disregard of the initial guess of its location. We have
tested the different prior influence on the final average error
and standard deviation. From the table and figure, The prior
has a minor influence on the estimation.

VI. CONCLUSION

In this project, we implemented a re-localization pipeline
using PoseNet as the front-end and GTSAM as the back-end.
PoseNet was implemented using the VGG-16 architecture in
Tensorflow and trained/tested on the following datasets:
• Kings College Dataset
• Shop Facade Dataset
• NCLT Dataset



Fig. 11: Localization test with the respective priors on a partial area of NCLT dataset: (i) Bad Prior (ii) Medium Prior, (iii)
Good Prior

GTSAM was implemented for factor graph optimization where
PoseNet served as our sensor model and the odometry data as
our motion model. These two were fused together through
GTSAM to give a final factor graph representing the robot’s
trajectory.

Prior Mean Error Standard Deviation
Bad Prior 20.40912m, 0.205° 12.6454m,0.555°

Medium Prior 20.41747m, 0.205° 12.64738m, 0.555°
Good Prior 20.42789m 0.205° 12.65145m, 0.555°

TABLE II: Comparison of PoseNet’s Performance with differ-
ent location priors on the NCLT dataset

Through our work, we established that CNNs have the
potential of being used in the domain of SLAM (as a sensor
model in our use case). Thought it is an end-to-end model, one
of it’s limitations is that it doesn’t generalize well on datasets
with different distributions.

Through our experiments on the large scale outdoor NCLT
dataset, we realized that there are some scenarios where our
PoseNet implementation cannot do well. Most of the places in
the dataset contain similar features which makes it extremely
difficult to regress the actual location of the robot in the scene.
For example, if two of the images contain just trees and a
pedestrian pathway, it would be extremely difficult for the
robot to localize. Currently, PoseNet only takes one frame to
regress the robot’s location. A possible extension to solve this
problem can be to take a sequential stream of images as input
to PoseNet rather than just the current frame. In that way, a
relation between the robot’s actual location in the scene can
be regressed and matched.

Secondly, due to the limited size and quality of the datasets,
we weren’t able to train the regressor with a deeper network,
like ResNet which may improve the accuracy significantly.
Finally, a 360deg view of the scene provides a better estimate
than just one image. We realized this from the fact that, if we
use the scenes on the right side of the robot to train, and the
left side of the robot (on the same path) to test, it leads to a
significant inaccuracy in the robot’s re-localization algorithm.
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